Small Business Innovation Research/Small Business Tech Transfer

Minimally Machined HoneySiC Mirrors for Low Areal Cost and Density, Phase II

Completed Technology Project (2011 - 2014)

Project Introduction

A problem perceived for Trex Enterprises chemical vapor composite silicon carbide CVC SiC $\,$


TM

mirrors is the cost associated with machining and lightweighting the mirrors. Indeed these processes are labor, schedule, risk and cost drivers for our exceptional, high performance variety of silicon carbide material. Although we have made significant strides in improving our baseline CVC SiC

TΜ

manufacturing processes, the product is still substantially higher priced than the goals of the NASA project. In Phase I, we created and demonstrated a manufacturing process for the new ceramic matrix composite honeycomb panel silicon carbide (HoneySiC or H-SiC) which nearly eliminates the machining and lightweighting process steps for mirrors and opto-mechanical structures. The new material achieves lightweighting of 92% relative to bulk material and net production cost on the order of \$38K per square meter (unpolished), less than half of NASA's goal of \$100K per square meter. Web thickness, core geometries (pocket depth, pocket size), and mirror shape are easily tailored since H-SiC starts as a molded precursor material. The Phase II project will start at Technology Readiness Level 3 (TRL 3, experimental critical function and characteristic proof of concept) and end at TRL 5 (breadboard in a relevant environment).

Primary U.S. Work Locations and Key Partners

Minimally Machined HoneySiC Mirrors for Low Areal Cost and Density, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Minimally Machined HoneySiC Mirrors for Low Areal Cost and Density, Phase II

Completed Technology Project (2011 - 2014)

Organizations Performing Work	Role	Туре	Location
Trex Enterprises	Lead	Industry	San Diego,
Corporation	Organization		California
Marshall Space Flight	Supporting	NASA	Huntsville,
Center(MSFC)	Organization	Center	Alabama

Primary U.S. Work Locations	
Alabama	California

Project Transitions

O

June 2011: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137403)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Trex Enterprises Corporation

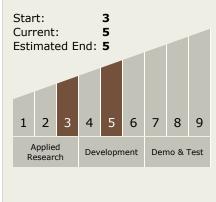
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Bill Goodman

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Minimally Machined HoneySiC Mirrors for Low Areal Cost and Density, Phase II

Completed Technology Project (2011 - 2014)

Technology Areas

Primary:

 TX08 Sensors and Instruments
TX08.2 Observatories
TX08.2.1 Mirror Systems

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

